
LA-UR-17-30185
Approved for public release; distribution is unlimited.

Title: LLVM Infrastructure and Tools Project Summary

Author(s): McCormick, Patrick Sean

Intended for: ECP/ATDM project documentation.

Issued: 2017-11-06

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

2.3.2.01 – LLVM Infrastructure and Tools

This project works with the open source LLVM Compiler Infrastructure (http://llvm.org) to provide tools
and capabilities that address needs and challenges faced by ECP community (applications, libraries, and
other components of the software stack). Our focus is on providing a more productive development
environment that enables (i) improved compilation times and code generation for parallelism, (ii)
additional features/capabilities within the design and implementations of LLVM components for
improved platform/performance portability and (iii) improved aspects related to composition of the
underlying implementation details of the programming environment, capturing resource utilization,
overheads, etc. -- including runtime systems that are often not easily addressed by application and library
developers. Current efforts are focused on the needs of the FleCSI framework (1.3.3.12) and La Ristra
application (1.2.2.01) projects. Many aspects of this work include applying our techniques to codes that
use Kokkos (1.3.1.05) and RAJA (1.3.1.08) – whom we collaborate with to understand the challenges
they are facing with regards to the focus areas above. We focus on the C Family of languages (primarily
C++) and are actively working with the Flang Project (2.3.5.X -- not sure where this ended up) to
expand coverage to include Fortran. Additionally, there are synergies with the PROTEUS project
(1.3.2.12) where collaborate on the use of higher-level forms of intermediate code representation with
LLVM. Finally, we will actively engage the broader LLVM community to explore and initiate the steps
needed to have our efforts incorporated into the infrastructure – our first target is participating in the
parallel intermediate representation working group that has recently formed. This step is a critical aspect
to achieving a long-term (post ECP) solution for the DOE community and also in terms of making the
LLVM infrastructure a better match for addressing ECP challenges.

LLVM Infrastructure and Tools Overview

Scope & Intent R&D Themes Delivery Process Target ECP Users Support Model
Research, design
and development
and support for an
ECP-aware LLVM
compiler
infrastructure.
Long-term
contributions of our
work back into the
LLVM
infrastructure for
wider deployment.

Compiler
infrastructure
and supporting
implementation
details including
developer
productivity and
performance
portability
aspects.

Regular open-
source releases of
software on
GitHub that
follow the
established phases
of the LLVM
Project as well as
releases that
address reported
issues and feature
requests from the
ECP community.

Applications and/or
libraries using the
C, C++ or Fortran
families of
languages. We are
especially
interested in those
that are having
issues with
efficient/optimized
code generation,
significant compile-
time overheads, and
with platform and
performance
portability
concerns.

Ongoing
developer
support.
Dedicated email
and github issue
tracking, and
open source
access. Work
with LLVM
community for
adoption of our
contributions.

LLVM Infrastructure and Tools FY18 Milestones

Note this project is part of the NNSA ASC Co-Design L2 Milestone for FY18.

Milestone ID Milestone Title ECP Users

NA Verison drop of custom LLVM
infrastructure exploring
improved complication of
OpenMP (C++ and Fortran),
FleCSI, Kokkos and RAJA
constructs.

La Ristra (1.2.2.01), FleCSI and
codes that utilize OpenMP (C++
or Fortran/Flang), Kokkos
and/or RAJA.

NA Verison drop of LLVM
infrastructure utilizing improved
intermediate form for
representing, analyzing and
optimizing parallel constructs.

La Ristra (1.2.2.01), FleCSI and
codes that utilize OpenMP (C++
or Fortran/Flang), Kokkos
and/or RAJA.

NA NNSA ASC Co-Design L2 final
report

NNSA ASC, ECP leadership,
ECP projects.

Impact goals and metrics: List 2 – 3 impact goals and how you will measure progress.

LLVM Infrastructure and Tools Impact Goals & Metrics

Goal Metric

Improve compile times for complex C++ code
constructs focused on those used in FleCSI,
Kokkos and RAJA. We also hope to explore
related aspects here such as intermediate and
executable file sizes.

Provide a modified implementation of the LLVM
compiler infrastructure that provides improved
compile times and lower overheads (e.g. reduce
intermediate object file and executables sizes) for
C++ codes that have known (well defined) syntax
and parallel semantics.

Improve LLVM’s ability to handle (analyze,
optimize) parallel code constructs via the use of a
high-level intermediate representation. At the
same time engage with the LLVM community to
help push for this capability in the standard LLVM
implementation. Aspects here will range from
OpenMP, FleCSI, Kokkos and RAJA.

Show improved anlaysis and/or optimization of
C++/C and Fortran codes with known (well
defined) parallel semantics. As applicable we will
expand our experiments here to include aspects of
production codes within ASC.

